Given that \(81\times 2^{2n-2} = K, find \sqrt{K}\)
The correct answer is: C
Explanation
\(K = 81 \times 2^{2n - 2}\)
\(\sqrt{K} = \sqrt{81 \times 2^{2n - 2}}\)
= \(9 \times 2^{n - 1}\)
Given that \(81\times 2^{2n-2} = K, find \sqrt{K}\)
\(K = 81 \times 2^{2n - 2}\)
\(\sqrt{K} = \sqrt{81 \times 2^{2n - 2}}\)
= \(9 \times 2^{n - 1}\)