If \(\frac{\sqrt{2} + \sqrt{3}}{\sqrt{3}}\) is simplified as m + n\(\sqrt{6}\), find the value of (m + n)
The correct answer is: C
Explanation
\(\frac{\sqrt{2} + \sqrt{3}}{\sqrt{3}}\) = \(\frac{\sqrt{2} + \sqrt{3}}{\sqrt{3}}\) x \(\frac{\sqrt{3}}{\sqrt{3}}\)
= \(\frac{\sqrt{2} \times \sqrt{3} + \sqrt{3} \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}\)
= \(\frac{\sqrt{6} + 3}{3}\)
= \(\frac{3 + \sqrt{6}}{3}\)
= Hence, (m + n) = 1 + \(\frac{1}{3}\)
= 1\(\frac{1}{3}\)