The interior angles of a polygon are 3x\(^o\), 2x\(^o\), 4x\(^o\), 3x\(^o\) and 6x\(^o\). Find the size of the smallest angle of the polygon.
The correct answer is: B
Explanation
3\(x^o\) + 2\(x^o\) + 4\(x^o\) + 3\(x^o\) + 6\(x^o\) = 540\(^o\)
\(\frac{18x^o}{18} = \frac{540^o}{18}\)
\(x^o\) = 30\(^o\)
Smallest angle = 2 x 30\(^o\) = 60\(^o\)