If a = 3 and b = -7, find the value of \(\frac{5b+(a+b)^2}{(a-b)^2}\)
The correct answer is: C
Explanation
\(\frac{5b+(a+b)^2}{(a-b)^2}\)
= \(\frac{5 * -7 +(3+ -7)^2}{(3- -7)^2}\)
= \(\frac{-35 + 16}{10^2}\)
= \(\frac{-19}{100}\) or -0.19
If a = 3 and b = -7, find the value of \(\frac{5b+(a+b)^2}{(a-b)^2}\)
\(\frac{5b+(a+b)^2}{(a-b)^2}\)
= \(\frac{5 * -7 +(3+ -7)^2}{(3- -7)^2}\)
= \(\frac{-35 + 16}{10^2}\)
= \(\frac{-19}{100}\) or -0.19