MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • πŸ“°
    Latest School News
  • πŸ“š
    Scholarships
  • πŸŽ“
    JAMB Syllabus
  • πŸ“
    Jamb Brochure

Information

  • πŸ”—
    Contact US
  • πŸ”—
    Privacy Policy
  • πŸ”—
    Terms and Conditions
  • πŸ”—
    About US

Solve \(2^{5x} \div 2^x = \sqrt[5]{2^{10}}\)

  • πŸ“‘ Past Questions
  • βŒ› Take CBT exam
  • πŸ“Ÿ Referral
  • 🎫 Support
  • πŸ“’ Earnings
Mathematics WAEC 2023

Solve \(2^{5x} \div 2^x = \sqrt[5]{2^{10}}\)

  • \(\frac{3}{2}\)
  • \(\frac{1}{2}\) checkmark
  • \(\frac{1}{3}\)
  • \(\frac{5}{3}\)

The correct answer is: B

Explanation

\(2^{5x} \div 2^x = \sqrt[5]{2^{10}}\)

applying the laws of indices

\(2^{5x - x} = 2^{10(1/5)}\)

\(2^{4x} = 2^{10(1/5)}\)

\(2^{4x} = 2^2\)
Equating the powers
then 4x = 2

therefore, x = \(\frac{2}{4}\) = \(\frac{1}{2}\) 

Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com