If \(log_a 3\) = m and \(log_a 5\) = p, find \(log_a 75\)
The correct answer is: C
Explanation
Given: \(log_a 3\) = m and \(log_a 5\) = p
\(log_a 75\) = \(log_a (3 × 25)\)
= \(log_a (3 × 5^2)\)
= \(log_a 3 + log_a 5^2\)
= \(log_a 3 + 2log_a 5\)
Since \(log_a 3\) = m and \(log_a 5\) = p
∴ \(log_a 75\) = m + 2p