MyStudyPals.com MyStudyPals.com
  • Login
  • Feed

Resources

  • πŸ“°
    Latest School News
  • πŸ“š
    Scholarships
  • πŸŽ“
    JAMB Syllabus
  • πŸ“
    Jamb Brochure

Information

  • πŸ”—
    Contact US
  • πŸ”—
    Privacy Policy
  • πŸ”—
    Terms and Conditions
  • πŸ”—
    About US

Solve: \(log_3 x + log_3 (x – 8) = 2\)

  • πŸ“‘ Past Questions
  • βŒ› Take CBT exam
  • πŸ“Ÿ Referral
  • 🎫 Support
  • πŸ“’ Earnings
Mathematics WAEC 2023

Solve: \(log_3 x + log_3 (x – 8) = 2\)

  • 8
  • 6
  • 9 checkmark
  • 7

The correct answer is: C

Explanation

\(log_3 x + log_3 (x - 8) = 2\)

 

\(log_3 x(x - 8) = log_39\) since 2 =   \(log_39\)


\(log_3\) cancels out


β‡’ x(x - 8) = 9

β‡’ \(x^2 - 8x = 9\)

β‡’ \(x^2 - 8x - 9 = 0\)

β‡’ \(x^2 - 9x + x - 9 = 0\)

β‡’ x(x - 9) + 1(x - 9) = 0

β‡’ (x - 9)(x + 1) = 0

β‡’ x = 9 or x = -1

Since we can't have a log of negative numbers,

∴ x = 9.

Previous Question Next Question

Leave A Comment

© 2025 MyStudyPals.com